Modular Actuator Product Line

The Customizable Actuator for Space Precision Rotation (CASPR) product line offers accurate and smooth rotation of spacecraft payloads. It can be used for antenna pointing mechanisms (single axis or biaxial) on communications satellites, or coupled with a slip ring for solar array driving applications. Its long-life design can be adapted for shorter-life missions.

Design Highlights

The actuator comes in two sizes for small (CASPR 10) and medium (CASPR 20) payloads.

- Optional position feedback
- Low torque disturbance
- Two-phase or three phase motors
- Zero backlash (harmonic drive gears)
- High stiffness

CASPR 20

- 5.5"dia. x 6" long
- 516 in-lbs torque @28V
- Articulate 1-3 meter antenna

Applicability

- LEO, HEO, MEO, and GEO orbits
- Flight heritage
- Class A-D versions available

CASPR 10

- 3.6"dia. x 4" long • 78 in-lbs torque @ 28V
- Articulate <1 meter antenna
- **CASPR 20 Flight Hardware**

Heritage Products (Cont.)

Extra Large Rotary Actuators (TRL 9)

High Stiffness/Torque Applications

- Extended boom steering mechanisms with beryllium structural parts High torsional stiffness and large
- center aperture for cable routing 10.5" diameter Zero-Cogging Motor
- · Dual chamber, counter rotating cable wrap with RF and DC data and power transmission
- High strength external stop assembly to handle large inertial loads

Key Requirements	
Range of Travel (deg)	<340
Weight (Ibs)	75-84
Lifetime Travel (1x)(1x10° deg)	30
Max Rate (deg/s)	1.60
Resolver Accuracy (deg)	.026
Stiffness, Torsion (1x10° in-1b/rad)	1.7
Stiffness, Bending (1x10° in-1b/rad)	~4.6
Drive Torque (in-lb)	615
Motor Type	2 Phase

Custom Mechanisms

Key Requirements			
Deployment	Latch	Linear	
<= 90 deg	1 inch	3.8 inch	
80	9	12.3	
40	200	15,330	
1x and 32x	N/A	N/A	
.17 deg/s	.1 in/s	0.868 in/s	
3000 in-Ibf	5700 lbf	>45 lbs	
BLDC	BLDC	4 phase	
	Deployment <= 90 deg 80 40 1x and 32x .17 deg/s 3000 in-lbf	Deployment Latch <= 90 deg	

Custom Mechanisms

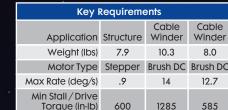
Optical pointing, high-speed scanning (terrestrial or space applications), flip mechanisms, tracking and launching mechanisms Examples:

- 4 axis deployable boom assembly
- High torque latch actuator with bevel gears
- · Linear actuator utilizing ball screw with photo-resistor position feedback

For more information, please contact: SVPP@ngc.com All Rights Reserve d

Common Space Vehicle Mechanisms

Actuators at a Glance


Northrop Grumman has been delivering space mechanisms for stowing and articulating spacecraft payloads and solar arrays for 40+ years with 100% mission success and our modular actuators are represented on over 50 missions. Our designs specialize in:

- Long-life or high-use missions
- Low disturbance (induced vibrations reduced for simultaneous operation of payloads)

 Precision pointing (higher altitude missions)

Heritage Products

Deployment Actuators (TRL 9)

Mechanisms to deploy structure or to spool cables. High torque output with current limit drive, or stepper motor (or micro-stepping for low disturbance). Continuous rotation Cable winder mechanisms have

- two assemblies: Cable Drive Module (CDM)
- Current Limiter Assembly (CLA)

Precision Pointing Mechanisms:

Single and multiple axes rotary mechanisms with cable management systems (RF and DC data/power transmission), zero cogging motors (optional jitter compensation algorithms), zero backlash gearing, highly accurate position feedback, and micro-stepping capability yielding arc-second magnitude pointing

- Stop assembly options:
- Deployable/Stowage stops
- Large travel range (up to 510 degrees)

Large Rotary Actuators (TRL 9)

High Torque & Large Range of Travel Large payload (antenna or boom assembly) articulation

	Key Requirements	
/)	Range of Travel (deg)	±255
	Weight (Ibs)	38-138
	Lifetime Travel (1x)(1x10° deg)	100
	Rate (deg/s)	2.3
	Resolver Accuracy (deg)	.026
	Stiffness, Torsion (1x10 ⁶ in-1b/rad)	390
	Stiffness, Bending (1x10° in-1b/rad) X-axis / Y-axis	1.6 / 2.0
	Drive Torque (in-Ib)	502
	Motor Type	2 Phase
	• • • • •	

Medium Rotary Actuators (TRL 9)

- High Torque & Medium Size Payload
- Higher speed capability with dual actuator
- configuration
- Higher torque options with larger motor

Key Requirements		
Range of Travel (deg)	±170	±160
Weight (Ibs)	25-47	24-52
Lifetime Travel (1x)(1x10° deg)	70	67.3
Rate (deg/s)	2.3	19.2
Resolver Accuracy (deg)	.026	.026
Stiffness, Torsion (1x10° in-1b/rad)	0.28	0.22
Stiffness, Bending (1x10° in-1b/rad)	1.5	~1.3
Drive Torque (in-lb)	425	502
Motor Type	2 Phase	2 Phase

Solar Array Drive Assembly (TRL 9)

Option	High Power	Scalable Power	Limited Angle
Range of Travel (deg)	Cont. rotation	Cont. rotation	170
Weight (lbs)	70.5	21.7	30
Lifetime Travel (1x)(1x10° deg)	1.8 (5k revs)	21 (58k revs)	5.3
Rate (deg/sec)	.004 (1 rev/day)	0.5	0.5
Pwr/Sig circuits	50 pwr / 68 high sig & 28 low sig	12 rings @ 12 Amps (max)	78 (20 AWG)/ 48 (24 AWG)
Total Transfer Capability	384 Amps	~780 Amps (60 pwr/60sig)	168 Amps

Provides transmission of solar power and electronic signals between solar array and spacecraft; custom or modular slip ring designs for full 360-degree rotation or cable wrap design for limited angle rotations; EMI shielding; Electrically redundant

- SADA with limited travel (cable management system)
 - Provides bi-directional rotation to maintain limited angle positioning of the solar array
 - Provides absolute angular position knowledge
- SADA with continuous rotation (slip ring)
- Provides continual 360-degree rotation of the solar array to maintain solar orientation
 Provides null position information (via switch ring 1X/Rev)
- Configurable items:
- Modular Slip ring scalable power with 20 or 30 ring modules; Up to four modules (max 120 circuits)
- Position Feedback: Switch Ring/Potentiometer/ Resolver

Biaxial Actuators (TRL 9)

Orthogonal Axes of Rotation/ "Cone" Coverage

- Commonly used to host medium sized antennas in different orbits (e.g. 1-2 meter diameter)
- RF/DC/waveguide for payload signal/power transmission
- Used for JWST, AEHF, STSS antennas

Key Requirements		
Range of Travel (deg)	<=45	<=340
Weight (Ibs)	57.9	24-70.5
Lifetime Travel (1x)(1x10° deg)	15	8
Rate (deg/s)	.47	3.0
Resolver Accuracy 3 sigma (deg) Spec/Capability	.005	.015
Stiffness, Torsion Inboard / Outboard (1x10 ³ in-1b/rad)	27.2	100
Drive Torque (in-lb)	554	557

