

ESPASTAR-HP™

High Reliability Operational Access to Space

The Northrop Grumman ESPAStar-HP extends the capabilities of the flight-proven ESPAStar product line to create new operational mission capability. Redundant components are utilized to increase the reliability of the platform.

The ESPAStar-HP platform provides increased payload size, mass and power allocation, as well as increased ΔV for GEO missions five years in duration or greater. The ESPAStar-HP uses the same heritage components from the successful, flight-proven ESPAStar product line and provides key enhancements to support operational missions. Enhancements include an optional M-Code compatible

GPS receiver, fully redundant avionics, "4 for 3" reaction wheel assemblies, a redundant communication subsystem, and payload hosting capability on the equipment deck to augment the 12 PPICD compliant payload ports. The ESPAStar-HP operational platform is ready to serve your mission payload needs.

ESPASTAR-HP™

SPECIFICATIONS

SPACECRAFT

Orbit: Optimized for GEO, adaptable for LEO

and MEO missions

Targeted Mission

Durations:

Five to seven years

P_s > 0.8 @ 5 yrs, Selective Redundancy Reliability:

Dry Mass (no P/Ls): < 900 kg (orbit-dependent)

Dimensions (no P/Ls): 157.5 cm dia. x 127 cm (62" dia. x 54" ht.)

Fuel Capacity: 558 kg

Payload Mass: > 1,920 kg (> 320 kg per port)

Payload Power

(OAP/PK):

3 kW (base), optionally up to 4 kW

Battery: 450 A-hr Li-ion

400 kbps/5.6 Mbps via Downlink Rate:

AFSCN, also USB compatible

Uplink Rate: 2.0 kbps via AFSCN

Payload

Up to 48 GB, dynamically allocated Data Storage:

by mission integrator

Attitude Knowledge^{α}: < 10 µrad (1 σ)

Attitude Control^{β}: < 50 µrad (1_o) via 3-Axis RWA control

Jitter at Payload

Interface: $< 20 \mu rad, (1\sigma), > 0.1 Hz$

Slew Rate: ≥ 0.5 deg/sec

Position Control: 12 x 0.9-N + 4 X 22 N REAs, 6 DoF control

Position Knowledge: < 25 m (1 σ), < 5 m typical

FOR MORE INFORMATION

Jonathan P. Davis Director, Business Development Tactical Space Systems Division jonathan.davis@ngc.com (703) 429-7080

MISSION SERVICES

- Mission Analysis
- Payload Integration
- · Testing and Verification
- · Launch Vehicle Integration
- Launch Operations
- Mission Operation
- · Safety & Mission Assurance

 α = Assumes additional contributions to attitude knowledge error are removed by adding additional star tracker head and/or payload data

 $^{\beta}$ = Assumes < 10 µrad (1 σ) attitude knowledge error

ESPAStar-HP PLATFORM

ESPAStar-HP ring 137 cm ht (54")

Equipment deck and bus components

2x stowed UltraFlex solar array

1,575mm Separation system

Payload Volumes 1-6M

Payload Volume 3M/6M =

Payload Volumes 1-6P

Payload Volume 3P/6P =

©2024 Northrop Grumman Approved for public release – NGSH2022

