Cr⁴⁺: YAG - Passive Q-Switch

Passive Q-switches or saturable absorbers provide high power laser pulses without electro-optic Q-switches, thereby reducing the package size and eliminating a high voltage power supply. Cr⁴⁺:YAG is more robust than dyes or color centers and is the material of choice for 1 micron Nd lasers.

A small fraction of the chromium ions in YAG can be induced to change valence from the normal Cr³⁺ to Cr⁴⁺ with the addition of charge compensating impurities such as Mg²⁺ or Ca²⁺. The convenient measure of the Cr⁴⁺ concentration is the low power absorption coefficient α at 1064 nm. Typical α values vary from about 1.5 cm⁻¹ for tunable laser crystals to 3 - 6 cm⁻¹ for passive Q-switches. The actual Cr⁴⁺ ion density N in the crystal can be calculated from N = α / σ_A where σ_A is the absorption cross-section with a value¹ of 5 x 10⁻¹⁸ cm².

Passive Q-switches are typically specified by the low power Optical Density (or %T) at the laser wavelength. Synoptics measures the α value in the Cr⁴⁺:YAG boule and adjusts the part thickness to the Optical Density specified. Thickness is a free parameter, but typically 1 - 5 mm.

Specifications		
SYNOPTICS Standards	Orientation:	< 100 >
	Surfaces:	flat / flat
	Coatings:	AR < 0.2% at 1064 nm
	Damage Threshold:	> 500 MW / cm ²
Customer Values	Diameter:	typical: 3 - 10 mm
	Optical Density	typical: 0.30, 0.40, 0.50, ±10% @ 1064 nm

References

1. Review Article: A.G. Okhrimchuk and A.V. Shestakov, Optical Materials 3 (1994) pp.1-13.

Specifications and information are subject to change without prior notice. © 2011 Northrop Grumman Corporation

1-704-588-2340 • FAX 704-588-2516 1201 Continental Blvd., Charlotte, NC 28273 Email: STSynoptics.Sales@ngc.com Website:www.as.northropgrumman.com/synoptics

