Ti:Sapphire – Ti: Al₂O₃

Ti:Sapphire was demonstrated as an active solid-state laser material in the 1980's. With a broad visible absorption band it is conveniently pumped with green wavelength lasers to produce a tunable output from 700 to 900 nm. The broad fluorescence enables production of modern ultrafast lasers. Ti:Sapphire is one of the most robust solid-state laser materials with a thermal shock resistance three times that of Nd:YAG.

Structural & Thermal Properties		
Formula:	Ti ³⁺ : Al ₂ O ₃	
Crystal System:	Hexagonal	
Unit Cell Dimensions (as if hexagonal) 1	a = 4.759 Å c = 12.99 Å	
X-Ray Density:	3.98 g/cm ³	
Melting Point: 1	2050°C	
Thermal Expansion: at 323 K ¹	⊥ c 5 x 10 ⁻⁶ K ⁻¹ ∥ c 6.6 x 10 ⁻⁶ K ⁻¹	
Thermal Conductivity: 300K ¹	⊥ c 30 W / m•K c 32 W / m•K	
Hardness: 1	Mohs: 9, Knoop: ⊥ c 2200 kg mm ⁻² ∥ c 1900 kg mm ²	
Young's Modulus: 1	345 GPa	
Specific Heat: at 293K ¹	770 J kg ⁻¹ K ⁻¹	
Thermal Shock parameter, R _T :	34 W / cm	

General Specifications		
Diameter Tolerance:	+0.000" / -0.002"	
Chamfer:	0.005" ± 0.003" @ 45°	
Barrel Finish:	55 µinches	
Perpendicularity:	within 5 arc minutes	
Parallelism:	10 arc-seconds or less	
Rod End Face Flatness:	within λ/10 wave at 633 nm wavelength	
Surface Quality:	<1.5 Å rms surface roughness	
Wave Front Distortion:	less than 1/2 wave per inch of length	
	(measured at 1 micron)	
Standard Coating:	Anti-Reflection with R < 0.25%	

Optical Properties		
Absorption coefficient (Ti ³⁺), α cm ⁻¹ (at 532 nm):	0.50 to 6.0 cm ⁻¹	
Figure of Merit, FOM ($\alpha_{532nm}/\alpha_{800nm}$)	>150	
Refractive index at 1.06 μm ²	n _o = 1.75449 n _e = 1.74663	
Refractive Index Temperature Coefficient: visible wavelengths near 25°C ³	13 x 10 ⁻⁶ K ⁻¹	
Brewster angle:	60.4°	
Fluorescence lifetime at 300K:	3.0 μs	

¹ Sapphire: Material, Manufacturing, Applications, Elena Dobrovinskaya et al., Springer (2009)

Specifications and information are subject to change without prior notice. © 2011 Northrop Grumman Corporation

Website: www.as.northropgrumman.com/synoptics

² Handbook Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

³ Malitson, J.Opt.Soc.Am., V52, 1377-1379 (1962)