

 $\textbf{SYNOPTICS}^{\text{\tiny{TM}}}$

Coating Capabilities

Specializing in High Laser Damage Threshold Thin Films

Resistive Source

Single Layer MgF₂ AR coatings for YAG and TGG

Electron-Beam

High LDT coatings for pico-second through microsecond applications, 60J/cm² typical for 20ns

Ion Assist Electron-Beam

Economical dense oxide films

Ion Beam Sputtering (conventional)
Typical low-loss discreet material oxide films

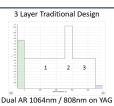
Ion Beam Sputtering (material blends) High LDT Quasi-Rugate coatings for ultra-fast through CW applications from NUV to NIR STSynopticsSales@ngc.com ngc.com/synoptics

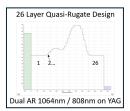
SYNOPTICS

SYNOPTICSTM

Ion Beam Sputtering


Specializing in High Laser Damage Threshold Thin Films


Ion Beam Sputtering (conventional)


- Stable low loss oxide films
- · Robust and environmentally stable
- Discreet material coatings útilizing HfO₂/SiO₂ or Ta₂O₅/SiO₂ multi layer designs

Ion Beam Sputtering (material blends)

- Quasi-Rugate AR coatings from 355nm to 2200nm
- HfO_2 -SiO $_2$ and Ta_2 O_5 -SiO $_2$ material blends allow for "index of refraction" tuning
- Reflectivity losses below 50ppm for selected applications
- Highest demonstrated Laser Damage Thresholds for Ion Beam Sputtered films

STSynopticsSales@ngc.com ngc.com/synoptics

SYNOPTICS